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1. Introduction

With the use of linear programming techniques in
industrial applications rising steadily, there is a
definite need for efficient and robust solvers that

can handle very large problems. Nowadays high-
performance parallel machines make this vision pos-
sible. This article describes a step that was taken re-
cently at Cornell and Argonne National Lab towards
this goal: a parallel LP—solver based on interior point
methods, targeted at the distributed memory IBM
SP2 architecture and implemented entirely in C with
MPI extensions.

Until 10 years ago, the Simplex method dominated
the linear programming world; a lot of mindpower
has produced efficient and sophisticated implemen-
tations of this algorithm. However, it is not easily
parallelized and thus the memory resources available
to a single processor places a bound of sorts on the
problem size that can be handled by the simplex ap-
proach. With the revolutionary development of inte-
rior point (IP) methods for linear programming, this
picture has changed significantly. Not only has this
IP—framework shown itself to be a very robust and
efficient (and polynomial) algorithm for linear pro-
gramming, it is also much more easily parallelized
since most of the computational work is done in the
solution of a positive (semi-) definite system of lin-
ear equations. Now that a number of good serial
implementations are freely available, it is time to do
the next step and produce a parallel code to enable
the solution of large problems.

2. Background

Let’s first introduce the main ideas of the underly-
ing algorithm. We’ll be brief and restrict ourselves
to exposing only the key elements of the algorithm
where most of the computational work lies since we
mainly want to focus on the parallel aspect of such a
method. Readers interested in more details of the
theory, definitions and convergence proofs are re-
ferred to the book by S. Wright [8], though it is
not essential to know these details to grasp the gist
of this article. We begin by stating a simple form of
the linear programming problem and its dual:

max clz
X
st. Az =10
x>0
and
min bl
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ATr+s=c¢
s > 0.

s.t.

The well-known necessary and sufficient optimality
conditions for this problem say that an optimal triple
(z*,7*,s*) with z* > 0,s* > 0 is a zero of the non-
linear map

Az —b
F(z,ms)=| ATm+s—c (1)
XSe
with
X = Diag(z), S =Diag(s), e=(1,...,1)T.

One key element of interior-point methods is that
they generate iterates (zy,m,Sk) that are strictly
feasible w.r.t. the inequality constraints, i.e., the pri-
mal variables z; and the dual slack variables s; are
always kept strictly positive. The serial code (PCx
[2]) on which we based our implementation follows
a variant proposed by Sanjay Mehrotra [5] that has
proven itself to be very successful in practice. The
overall search direction in each iteration is a combi-
nation of the so—called affine scaling direction and
a corrector step towards the interior of the posi-
tive orthant. The affine scaling (or predictor) step
(Amaﬁ, Aﬂaﬂ, Asaﬂ) is obtained by solving the sys-
tem

A 0 0 Az Th
0 AT T Ar | =—1| 1.
S, 0 X As Trs

(ry = Azp — b and r, = AT 7y, + 55, are the current
residuals of the primal and dual equality constraints
and r;; = X Ske is a vector of current complemen-
tarity gaps) and finding the maximal stepsize that
keeps z and s nonnegative if this step were to be
taken. This step corresponds exactly to a (trun-
cated) Newton step for the zero-finding problem (1);
it will get the iterate close to the boundary. The so-
lution of the system (corrector & centering step)

A 0 0 Az 0
0 AT I Ar |=—] 0
S, 0 X As Tzs

(rgs = Axaffpgaft, _ ore, T = n"'z’s and o is

a heuristically chosen centering parameter, see [2])

keeps the residuals of the equality constraints at the
same level while moving back towards the “central
path” by readjusting the complementarity gaps x;s;.

The overall search direction is then obtained by
simply adding the two directions and taking a frac-
tion of the maximum step towards the boundary.
Notice that these two systems only differ in the
right-hand side.

3. Linear Algebra and Parallelism

Since the matrix A is generally sparse, the coeffi-
cient matrix in this system also is sparse and highly
structured. Simple block elimination on the system
matrix yields the so—called “augmented system”

AT

(—AD2 y )( >:_<Tc+ii;_17”ms>

(with D = XS~! > 0) which is indefinite and nu-
merically tricky to solve. A further elimination step
yields the so—called “normal equations”

Az
AT

AD?ATAr = —ry + AD2(—7“C + X_lrws).

Provided that A has full row rank — a standard as-
sumption in linear programming that can be en-
forced by preprocessing — this system is symmet-
ric positive definite and can be solved directly via a
Cholesky factorization. Since the two systems only
differ in their right—-hand sides, we can use the com-
puted factor for the solution of both systems.
There are two drawbacks of these normal equa-
tions that we have to address. First, a single dense
column in A will make the whole system completely
dense. We can take care of (a reasonably small
number of) dense columns quite effectively via the
Sherman—Morrison—-Woodbury formula at the ex-
pense of a few triangular solves per dense column.
The second issue is that as we approach a solution,
some components of z and s are likely to be zero
which in turn will cause the system to become in-
creasingly singular. An effective remedy for this is a
modified Cholesky factorization which replaces small
pivot elements by a large number. This approach
has the advantage that the nonzero structure of the
system does not change over the iterations, which
implies that the symbolic phase of the factorization
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(incl. finding an ordering) has to be performed only
once.

Before moving on to discuss sources of parallelism,
we give a rough overview of the whole algorithm:

presolve
find ordering
symbolic factorization of AA”
find initial point
repeat

5. form AD?AT
perform numerical factorization
solve for affine scaling step
compute centering parameter o
. solve for corrector step

10. compute steplength
until convergence

Ll .

C 0~ O

Presolving is a heuristic step which eliminates re-
dundancies in the problem (e.g., row dependencies
in the constraint matrix are eliminated, some vari-
ables might be fixed at one of their bounds if the
other constraints imply so etc. ). It is not clear how
to parallelize this step efficiently just yet.

When a positive definite system is solved on a
single processor, the obvious objective of permut-
ing the matrix before factoring is to minimize the
fill-in incurred in the Cholesky factor. This prob-
lem is known to be NP-hard; the most successful
and widely used heuristic approaches are variants
of Liu’s Multiple Minimum Degree Ordering [4].
In a parallel setting, the ordering has another ef-
fect: it will determine the workload for each pro-
cessor. A good ordering for a parallel factorization
will have to balance these two objectives. Recently,
permutations derived from graph partitioning ideas,
known as nested dissection orderings, have been in-
vestigated (e.g., [6]) and are naturally much more
successful in balancing the load. Since the order-
ing is done only once and its runtime is negligible in
comparison, we can afford to spend some time with
it. In practice, hybrid strategies are used [6].

The obvious source of parallelism in this algorithm
is the Cholesky factorization. While the numerical
part is performed once per iteration and can be done
fully in parallel, the symbolic part is not easily par-
allelized. We do it on one processor. The triangular
solves are performed in parallel. Another nice conse-

quence of the fact that the structure of the systems
does not change from iteration to iteration is that the
load balancing is done only once, and so the memory
for the Cholesky factor can be allocated statically
and outside the main loop.

Steps 8 and 10 of the algorithm are minor heuris-
tic computations that are performed on all proces-
sors simultaneously. Step 5 is done in parallel in the
sense that each processor only forms the portions of
the matrix AD?AT it will need for the factorization.
This leads us from the instruction—level parallelism
to data—level parallelism and to a part of our imple-
mentation where there is room for more progress to-
wards the goal of solving really large problems: while
both the matrix AD?AT and the Cholesky factor are
kept in distributed form only, as of now we require
the constraint matrix to be present on all proces-
sors simultaneously. Changing this would require,
among other things, an integration of parallel level 2
BLAS operations, a parallel presolver and a parallel
ordering.

| PDS-20 |
size of A 32287 x 106180
ordering package WGPP
## processors 1 4 16
total running time 9291 4007 1817
av. factorization 142 59.4 24.6
av. A-solve 1.62 1.07 1.10
loop time 9056 3874 1730
in % of total 98% 97% 95%
forming AD?AT 98.2 | 44.5 16.3
in % of loop 1.1 % | 1.0% 0.9%
pred. & corr. steps 141 173 178
in % of loop 2.6% | 4.5% | 10.3 %
factorization 8679 | 3624 1503
in % of loop 96% 94% 87%
# of iterations 60 60 60

Table 1.1: Results for PDS-20, one of the larger
Netlib problems.

Numerous heuristics are inherited by pPCx from
the serial code, and we refer the interested reader to
the PCx user guide [2] for more details on these and
other issues.

4. Computational Results

pPCx is implemented entirely in ANSI C with MPI
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extensions, making it thus a very portable software
package. For the parallel solution of the positive
definite systems it uses the implementation of a par-
allel multifrontal Cholesky factorization in the pack-
age psspd that was developed at the Cornell The-
ory Center by Chunguang Sun [7]. psspd is a self-
contained package in the sense that it performs the
symbolic and numerical factorization phases as well
as the triangular solves. To test the performance
of nested dissection orderings (psspd provides an
implementation of Liu’s MMD ordering) we experi-
mented with an implementation by A. Gupta called
WGPP. The results, as we will see in the next section,
are quite interesting.

To give an impression of the performance of pPCx
we provide some sample results obtained from runs
on the IBM SP2 machine at the Cornell Theory Cen-
ter. We used “thin” nodes roughly equivalent to an
RS/6000 model 380 with 64KB data cache, a 64 bit
memory bus and 128 MB of main memory. pPCx was
tested on the larger problems that are contained in
the standard LP library at netlib and was always
run with the default parameter settings for PCx. All
times are given in wallclock seconds, the total run-
ning time includes pre— and postprocessing, but not
the time for reading in the data and converting it
to the internal data structures. The “average tri-
angular solve” time is the time required for both a
forward— and backward—substitution with the com-
puted Cholesky factor (that is, for two triangular
solves). The loop time is the total time for the iter-
ative process, that is, for repeated system solutions,
line searches and updates.

A typical example run is given in Table 1.1. We see
that the numerical factorization is very dominant,
and hence the algorithm profits from the speedup of
the parallel Cholesky procedure nicely. The triangu-
lar substitution does not scale as well and hence we
see that with increasing number of processors solving
for the predictor and corrector steps becomes more
and more significant computationally.

To wrap up, Table 1.2 shows an overview of a few
problems that enable us to get an impression of the
differences between WGPP and MMD (for more compu-
tational results see [1]).

We see that MMD and WGPP are very compa-
rable in the first 2 problems and that WGPP per-
forms significantly better on the PDS problems. In

fact, PDS-20 could not be solved on less than 8 pro-
cessors using the minimum degree ordering due to
memory limitations. The speedup of the factoriza-
tion is between 3 and 6 (better on larger problems),
the overall speedup is up to 5. Note that a significant
portion of the computation is still done in serial.

name: CRE-D size: 8926 x 69980
# procs | 1 [ 4 ] 18
total MMD 238 109 85.2
time WGPP 262 174 196
avg. num. MMD 2.06 0.79 0.60
fact. time WGPP | 2.69 1.59 1.38
avg. A MMD 0.16 0.10 0.15
solve time WGPP 0.18 0.16 0.35
name: KEN-18 size: 105127 x 154699
# procs || 1 | 4 | 18
total MMD 1036 479 355
time WGPP | 1610 673 480
avg. num. MMD 13.8 4.48 2.02
fact. time WGPP 19.63 5.94 2.64
avg. A MMD | 2.19 | 0.89 | 0.72
solve time WGPP 2.42 1.04 0.72
name: PDS-10 size: 16558 x 49932
# procs || 1 | 4 | 16
total MMD 3185 | 1678 1433
time WGPP | 1554 768 399
avg. num. MMD 57.0 27.8 21.8
fact. time WGPP 27.6 12.7 4.50
avg. A MMD 0.76 0.69 1.17
solve time WGPP 0.66 0.56 0.63
name: PDS-20 size: 33874 x 105728
# procs || 1 | 4 | 16
total MMD * * 10140
time WGPP | 9291 | 4007 1817
avg. num. MMD * * 108
fact. time WGPP 142 59.4 24.6
avg. A MMD * * 4.81
solve time WGPP 1.62 1.07 1.10

Table 1.2: Results for a few problems from the Ken-
nington library.

Conclusions and Future Direc-
tions

5.

There is a need for efficient parallel LP solvers capa-
ble of handling very large problems. The code pPCx,
currently implemented on the IBM—SP multiproces-
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sor system, is a step in this direction. The numerical
results presented here indicate that large problem in-
stances can be solved with good efficiency, and they
motivate further development.

Several improvements and investigations should
be performed to further enhance performance of
pPCx and its range of applicability. This work in-
cludes:

e Distribution of the matrix A among proces-
sors. The current implementation requires that
A be available on every processor (although the
Cholesky factor of AD2AT is distributed), a
memory limitation that can be severe for very
large problems.

e Further investigate ordering strategies, espe-
cially the graph partitioning algorithms. A dis-
tributed constraint matrix will require the use
of a parallel ordering.

e Investigate algorithmic variants that allow con-
current solution of triangular systems with mul-
tiple right-hand sides.

This report is based on a talk given by the third author at
the Eighth SIAM conference on Parallel Processing for Scien-
tific Computing in Minneapolis, MN, March 1997.
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Chairman’s Column

by Jorge J. Moré

This will be my last column as Chair of the STAM
Activity Group on Optimization. I have been for-
tunate to have a wonderful board to help with the
running of the STAG; I hope that the next Chair will
be blessed with the same kind of cooperation.

The STAG/OPT is alive and healthy. We continue
growing; in 1995 the membership was 592, in 1996
we grew to 630, and now we are at 674. We are the
fastest-growing SIAG by far, and the second largest
SIAG.

We have accomplished a fair amount, but from my
point of view four items stand out. The presentation
(at the Victoria meeting) of the first STAM Activity
Group on Optimization (SIAG/OPT) Prize is the
first item that I wish to highlight. Tim Kelley de-
serves high marks for chairing the awards committee.

We have also restarted the STAG/OPT newslet-
ter, Views & News, with Juan Meza as the new ed-
itor. The first issue looked very good, but each is-
sue brings new challenges. Obtaining good contribu-
tions to the newsletter is not easy, so if you have any
ideas, please contact Juan at meza@ca.sandia.gov.
He needs suggestions from the membership!

We also started the SIAG/OPT Web site at
http://www.siam.org/siags/siagop/siagop.htm
We have encouraged members with home pages to
register their home pages with SIAM, but only a
relatively small number of members (about 100 out
of 674) have taken advantage of this offer. If you
wish to be listed, send a message to Laura Helfrich at
helfrich@siam.org with your name and the URL
for your Web page.

We would like to update the STAG/OPT Web
page on a regular basis. The aim is to make the
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SIAG/OPT Web page an important source of in-
formation for the optimization community. I find
the list of members and the list of interesting opti-
mization sites quite useful. If you feel that we have
not included an interesting site, let me know, and
I will make sure that it gets added. Better yet, if
you are interested in taking over maintaining the
SIAG/OPT Web page, please drop me a note.

Our latest endeavor (April 1997) is an e-mail fo-
rum for the exchange of all questions related to op-
timization technology. You can use this forum for

e technical questions,

e announcements of papers,

e announcements of conferences, books, software,
Web pages, and so forth,

e availability of jobs, and

e STAG/OPT business.

The forum has worked well so far. Most of the mes-
sages have been announcements of new technical re-
ports or of SIAG/OPT business. I encourage you to
send in job postings, which are of special interest to
the student members. I am puzzled about the rela-
tively few messages on technical questions. Perhaps
individuals are somewhat afraid of asking a question
and sounding ignorant. On the other hand, well-
formulated questions can lead to interesting discus-
sions. Ideally, these discussions would be transacted
off-line, with the outcome summarized in a message
to the forum.

You can use this forum by sending a message to
opt@mailer.siam.org. If you are a member and
have not received any messages, send a message to
owner-opt@mailer.siam.org. Jim Parker, a STAM
staff member, is the owner of this list. He has been
very helpful in maintaining this list and tracking
down members without e-mail addresses.

In summary, we have accomplished a lot. More
could have been done, but I hope that you all are
pleased with what has been done. Note that none
of the officers has been indicted and that no special
prosecutors have been needed. On the other hand,
if we had a budget....

The business meeting at the International
Mathematical Programming Symposium was well
attended—in spite of stiff competition from a wine-
tasting excursion. As expected, most of the dis-
cussion revolved around plans for the Sixth SIAM

Conference on Optimization, which will be held in
Atlanta on May 10-12, 1999. The meeting will be
2.5 days long, with seven plenary talks and roughly
ten themes. Phil Gill and Tim Kelley, as co-chairs of
the organizing committee, answered questions about
the meeting. There was a lively debate on various
issues, with the hottest issue being the length of the
talks: researchers from outside North America gen-
erally felt that longer talks were needed.

The organizing committee is now seeking input
from the STAG membership on themes, minisym-
posia, plenary speakers, and short courses. Please
send your ideas to the committee by Oct. 31.

Attendance at any optimization meeting invari-
ably leads to reflection on progress and future di-
rections of optimization. The issue of progress in
optimization arose at a recent technical discussion
when the following question was posed: What prob-
lems can we solve today that we could not solve five
years ago?

This is a good question, and I would be inter-
ested in answers. For example, we now can reliably
and efficiently solve many large nonlinear optimiza-
tion problems when the user provides only the func-
tion. Five years ago we would have needed to use a
derivative-free method or to approximate the gradi-
ent by differences. Neither approach would have led
to a reliable and efficient method for solving large
problems. Current automatic differentiation tools
can produce the gradients of many partially separa-
ble problems accurately and quickly. We have also
made significant advances at the algorithmic level,
but the claims do not seem to be as strong. Or are
they?

What about other areas? What were the impor-
tant theoretical, algorithmic, or computational ad-
vances that were reported in Lausanne? Views on
these issues would make interesting contributions to
our newsletter, or to the opt e-mail forum. They
could also be posted in our Web page as success sto-
ries.
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Essays

I Know It When I See It:
Toward a Definition of Direct
Search Methods

Michael W. Trosset

Adjunct Associate Professor
Department of Computational & Applied Mathematics
Rice University, Houston, TX

(email: trosset@caam.rice.edu)

1. Introduction

Wright [18] has remarked that direct search meth-
ods presently enjoy a new respectability in the nu-
merical optimization community. However, as we
will endeavor to demonstrate, there is considerable
ambiguity about precisely what constitutes a direct
search method. As more and more researchers un-
dertake to study these methods, this ambiguity may
trouble some scholars. The status quo reminds us of
Justice Potter Stewart’s infamous pronouncement on
hard-core pornography in Jacobellis v. Ohio, 1964:
“I shall not today attempt to further define the kind
of materials I understand to be embraced within that
shorthand definition; and perhaps I could never suc-
ceed in doing so. But I know it when I see it.”

In this report, we discuss and attempt to remove
some of the ambiguities that potentially stigmatize
direct search methods. To do so, we propose the
following;:

Definition 1 A direct search method for numerical
optimization is any algorithm that depends on the
objective function only through the ranks of a count-
able set of function values.

Thus, in the terminology of Stevens [15], we define
direct search methods to be algorithms that utilize
only ordinal information about the function values.

The remainder of this report explores the impli-
cations of Definition 1. In Section 2. we describe
the origin of the phrase “direct search method” and

note more recent descriptions offered by two promi-
nent researchers. In Section 3. we consider the use
of models in numerical optimization and distinguish
between “direct search” and “derivative-free” meth-
ods. In Section 4. we consider the relation of direct
search methods to notions of simple and sufficient
decrease.

2. History

Although the phrase “direct search method” is
widely used, it is used somewhat ambiguously and
without general agreement as to precisely what it
should mean. As far as we have been able to deter-
mine, the expression was introduced by Hooke and
Jeeves [10], who obviously believed that they were
coining a phrase:

We use the phrase “direct search” to de-
scribe sequential examination of trial so-
lutions involving comparison of each trial
solution with the “best” obtained up to
that time together with a strategy for de-
termining (as a function of earlier results)
what the next trial solution will be. The
phrase implies our preference, based on ex-
perience, for straightforward search strate-
gies which employ no techniques of classical
analysis except where there is a demonstra-
ble advantage in doing so.

Although Hooke and Jeeves did attempt a formal
definition of direct search, they conceded that “it
is not difficult, however, to devise procedures that
are not altogether covered by this definition.” Other
researchers have declined to adopt the Hooke and
Jeeves definition; however, two crucial notions that
Hooke and Jeeves articulated are of enduring impor-
tance.

First, it seems evident that Hooke and Jeeves in-
tended direct search methods to be applicable in sit-
uations in which one can do no more than compare
objective function values:

The application of direct search to a prob-
lem requires a space of points P which rep-
resent possible solutions, together with a
means of saying that P; is a “better” so-
lution than P, (written P, C P,) for any
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two points in the space. There is presum-
ably a single point P*, the solution, with
the property P* C P for all P # P*.

This intent provides the inspiration for Definition
1. It has several implications, the most obvious and
best-known of which is the requirement that direct
search methods do not use derivative information.
Second, Hooke and Jeeves attempted to distin-
guish direct search methods from Newton’s method
and the method of steepest ascent/descent. The
precise basis for this distinction is somewhat ob-
scure. At one point it appears to be that direct
search methods do not fit second- or first-order poly-
nomials to the objective function; elsewhere Hooke
and Jeeves stated that direct search “does not in-
clude methods which possess a continuum of states,
such as those (e.g., Newton’s method and methods
of steepest ascent) which rely on the use of such tools
as derivatives and power series approximations.”
The legacy of Hooke and Jeeves [10] is easily dis-
cerned in more recent articles. Torczon [16] stated:

The direct search methods are character-
ized by the fact that the decision-making
process is based solely on function value in-
formation; these algorithms neither require
nor estimate, in any direct sense, derivative
information to determine a direction of de-
scent.

In her somewhat more extensive commentary on
the phrase “direct search method,” Wright [18] ob-
served:

Unfortunately, this term is not precisely de-
fined. Two necessary qualifications are:

e A direct search uses only function val-
ues;

e A direct search method does not ‘in its
heart’ develop an approximate gradi-
ent.

The second criterion is of course ill-defined:
its intent is primarily to exclude meth-
ods such as finite-difference quasi-Newton
methods that construct a vector subse-
quently treated as if it were the gradient,
but one could argue that any comparison of

function values constitutes development of
an approximate gradient. Despite this am-
biguity, there is general agreement about
the methods that do and do not qualify as
direct search methods...

The crucial notion that is common to both the
Torczon [16] and Wright [18] passages is that di-
rect search methods do not attempt to use or ap-
proximate derivative information. If this notion suf-
fices to describe direct search methods, then direct
search methods are identical to derivative-free meth-
ods. In the next section we will argue that these
terms should not be used synonymously and that
Definition 1 provides a useful way of distinguishing
between them.

3. To Model or Not To Model?

We begin by examining Wright’s [18] intention of
excluding finite-difference quasi-Newton methods as
direct search methods. Of course, this intention ex-
tends the intention of Hooke and Jeeves [10] to ex-
clude Newton’s method and the method of steep-
est descent. But whereas the latter methods can
be excluded by the simple requirement that direct
search methods may use only function values, finite-
difference quasi-Newton methods are not excluded
by this requirement. Depending on how one concep-
tualizes the class of quasi-Newton methods, there are
different ways to proceed.

The phrase “quasi-Newton method” is itself some-
what ambiguous, having been used differently by dif-
ferent authors. However, it is universally appreci-
ated that Newton’s method uses analytic gradients
and Hessians to model the objective function with
a second-order Taylor polynomial. Many modifica-
tions of this fundamental method are available; the
one most commonly designated quasi-Newton is the
one that replaces the analytic Hessian with an ap-
proximation to it. If one also replaces the analytic
gradient with a finite-difference approximation to
it, then one obtains a finite-difference quasi-Newton
method.

If one considers the essence of Newton’s method
to be its use of derivative information, i.e. its use of
the Taylor polynomial to model the objective func-
tion, then presumably the essence of finite-difference
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quasi-Newton methods is their attempt to model
derivative information. This is perhaps the predom-
inant perception in the numerical optimization com-
munity and it naturally leads to the principle, artic-
ulated by Torczon [16] and Wright [18], that di-
rect search methods do not model derivatives. How-
ever, if one looks beyond Taylor’s series approxima-
tions and considers the essence of Newton’s method
to be its use of a quadratic model of the objec-
tive function, then the essence of finite-difference
quasi-Newton methods is that they too use quadratic
models of the objective function. This perception
has also been articulated in the numerical optimiza-
tion literature, perhaps most notably by Dennis and
Schnabel [6]. (We also note that Gill, Murray, and
Wright [8] catalogued finite-difference quasi-Newton
methods under the heading Non-Derivative Quasi-
Newton Methods.) It leads to a principle that is
somewhat closer to the original spirit of Hooke and
Jeeves [10], viz. that direct search methods do not
model the objective function.

The principle that direct search methods do not
model the objective function evidently leads to a
more narrow characterization of direct search meth-
ods than does the principle that direct search meth-
ods do not model derivatives. It has the virtue of
distinguishing between direct search methods, which
do not model the objective function, and derivative-
free methods, which do not model derivatives. Since
derivative information is inevitably used to model
the objective function, we may then view direct
search methods as a subset of derivative-free meth-
ods.

We observe that the complement of direct search
methods in the set of derivative-free methods, i.e.
methods that model the objective function without
recourse to derivative information, is an interesting
and important class of algorithms. For optimization
in the presence of noise, methods that model the ob-
jective function by quadratic regression include Box
and Wilson [1] and their legacy of response sur-
face methodology, Glad and Goldstein [9], and El-
ster and Neumaier [7]. For numerical optimization,
similar methods that model the objective function
without recourse to derivative information include
Buckley and Ma [2], Powell [12, 13, 14], and Conn
and Toint [5] and Conn, Scheinberg and Toint [3].
A recent survey of derivative-free methods for un-

constrained numerical optimization was undertaken
by Conn, Scheinberg and Toint [4].

Unfortunately, the principle that direct search
methods do not model the objective function brings
us no closer to a formal definition of direct search
methods than Torczon [16] or Wright [18] because,
as the latter author observed, it is the term “model”
that is ambiguous. What we need is a formal defi-
nition that implicitly defines what it might mean to
model the objective function. This need is met by
Definition 1, which states that direct search methods
may compare function values but that they do not
have access to quantitative differences in function
values. The restriction to ordinal information about
the function values precludes constructing any of the
usual kinds of models, e.g. polynomials, without ne-
cessitating quibbling about exactly what it means to
construct a model.

4. Theories of Convergence

Given a current iterate z. and a trial iterate x;, an
algorithm for numerical optimization must decide
whether to accept (z; = z) or reject (z4 = z.)
the trial iterate. This decision is based on the objec-
tive function values, f(z.) and f(z;), and the precise
formulation of the decision rule plays a crucial role
in establishing convergence of the algorithm.

Torczon [17] emphasized the distinction between
decision rules based on simple decrease (x4 = x4
if f(z;) < f(z.)) and decision rules based on suf-
ficient decrease (x4 = z. if f(z.) — f(z) < € for
some € > 0), e.g. the Armijo-Goldstein-Wolfe con-
ditions. Most of the convergence theory developed
by the numerical optimization community is derived
from enforcing sufficient decrease; however, classical
direct search methods such as the simplex algorithm
of Nelder and Mead [11] are based on simple de-
crease. This poses a dilemma: one can either develop
theoretical tools based on simple decrease that can
be applied to existing methods or one can modify
existing methods in order to apply theoretical tools
based on sufficient decrease. Regardless of whether
or not the modified method is superior to the orig-
inal method, there is evident danger in the latter
approach: if successful, it is enormously tempting to
claim that convergence has been demonstrated for
the original method.
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In the present context, how can one decide if al-
gorithmic modifications are benign or fundamental?
Definition 1 provides an answer. By denying access
to quantitative differences in function values, we in-
sist that convergence theory for direct search meth-
ods be based on simple decrease. The litmus test is
as follows: if the modified algorithm cannot be used
in case only ordinal information about function val-
ues is available, then the modified algorithm is not a
direct search method and convergence of the original
algorithm cannot be claimed. As convergence claims
proliferate in the literature, thoughtful readers will
do well to keep this test in mind.
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